Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Immunol ; 12: 631662, 2021.
Article En | MEDLINE | ID: mdl-33833756

Background: This prospective multicenter study developed an integrative clinical and molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on machine-learning algorithms aimed at the prediction of TNFi response, based on clinical and molecular profiles of RA patients. Methods: A total of 104 RA patients from two independent cohorts undergoing TNFi and 29 healthy donors (HD) were enrolled for the discovery and validation of prediction biomarkers. Serum samples were obtained at baseline and 6 months after treatment, and therapeutic efficacy was evaluated. Serum inflammatory profile, oxidative stress markers and NETosis-derived bioproducts were quantified and miRNomes were recognized by next-generation sequencing. Then, clinical and molecular changes induced by TNFi were delineated. Clinical and molecular signatures predictors of clinical response were assessed with supervised machine learning methods, using regularized logistic regressions. Results: Altered inflammatory, oxidative and NETosis-derived biomolecules were found in RA patients vs. HD, closely interconnected and associated with specific miRNA profiles. This altered molecular profile allowed the unsupervised division of three clusters of RA patients, showing distinctive clinical phenotypes, further linked to the TNFi effectiveness. Moreover, TNFi treatment reversed the molecular alterations in parallel to the clinical outcome. Machine-learning algorithms in the discovery cohort identified both, clinical and molecular signatures as potential predictors of response to TNFi treatment with high accuracy, which was further increased when both features were integrated in a mixed model (AUC: 0.91). These results were confirmed in the validation cohort. Conclusions: Our overall data suggest that: 1. RA patients undergoing anti-TNF-therapy conform distinctive clusters based on altered molecular profiles, which are directly linked to their clinical status at baseline. 2. Clinical effectiveness of anti-TNF therapy was divergent among these molecular clusters and associated with a specific modulation of the inflammatory response, the reestablishment of the altered oxidative status, the reduction of NETosis, and the reversion of related altered miRNAs. 3. The integrative analysis of the clinical and molecular profiles using machine learning allows the identification of novel signatures as potential predictors of therapeutic response to TNFi therapy.


Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/drug therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Adult , Arthritis, Rheumatoid/classification , Arthritis, Rheumatoid/diagnosis , Biomarkers/blood , Cluster Analysis , Extracellular Traps/metabolism , Female , Humans , Inflammation , Longitudinal Studies , Machine Learning , Male , MicroRNAs/blood , Middle Aged , Oxidative Stress , Phenotype , Predictive Value of Tests , Prospective Studies , Treatment Outcome
2.
Antioxidants (Basel) ; 10(4)2021 Apr 13.
Article En | MEDLINE | ID: mdl-33924642

Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.

3.
Int J Mol Sci ; 21(6)2020 Mar 16.
Article En | MEDLINE | ID: mdl-32188016

Rheumatoid Arthritis (RA), Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are the systemic autoimmune diseases (SADs) most associated with an increased risk of developing cardiovascular (CV) events. Cardiovascular disease (CVD) in SADs results from a complex interaction between traditional CV-risk factors, immune deregulation and disease activity. Oxidative stress, dyslipidemia, endothelial dysfunction, inflammatory/prothrombotic mediators (cytokines/chemokines, adipokines, proteases, adhesion-receptors, NETosis-derived-products, and intracellular-signaling molecules) have been implicated in these vascular pathologies. Genetic and genomic analyses further allowed the identification of signatures explaining the pro-atherothrombotic profiles in RA, SLE and APS. However, gene modulation has left significant gaps in our understanding of CV co-morbidities in SADs. MicroRNAs (miRNAs) are emerging as key post-transcriptional regulators of a suite of signaling pathways and pathophysiological effects. Abnormalities in high number of miRNA and their associated functions have been described in several SADs, suggesting their involvement in the development of atherosclerosis and thrombosis in the setting of RA, SLE and APS. This review focusses on recent insights into the potential role of miRNAs both, as clinical biomarkers of atherosclerosis and thrombosis in SADs, and as therapeutic targets in the regulation of the most influential processes that govern those disorders, highlighting the potential diagnostic and therapeutic properties of miRNAs in the management of CVD.


Autoimmune Diseases/complications , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , MicroRNAs/metabolism , Antiphospholipid Syndrome/complications , Arthritis, Rheumatoid/complications , Atherosclerosis/etiology , Biomarkers , Cardiovascular Diseases/genetics , Gene Expression Regulation , Humans , Lupus Erythematosus, Systemic/complications , MicroRNAs/genetics , Oxidative Stress , Risk Factors , Signal Transduction/genetics , Thrombosis/etiology
4.
Front Immunol ; 10: 764, 2019.
Article En | MEDLINE | ID: mdl-31040845

Antiphospholipid Syndrome (APS) is an autoimmune disorder, characterized by pregnancy morbidity and/or a hyper coagulable state involving the venous or the arterial vasculature and associated with antiphospholipid antibodies (aPL), including anti-cardiolipin antibodies (aCL), anti-beta2-glycoprotein I (anti-ß2GPI), and Lupus anticoagulant (LA). In recent years there have been many advances in the understanding of the molecular basis of vascular involvement in APS. APS is of multifactorial origin and develops in genetically predisposed individuals. The susceptibility is determined by major histocompatibility complex (MHC). Different HLA-DR and HLA-DQ alleles have been reported in association with APS. Moreover, MHC II alleles may determine the autoantibody profile and, as such, the clinical phenotype of this disease. Besides, polymorphisms in genes related to the vascular system are considered relevant factors predisposing to clinical manifestations. Antiphospholipid antibodies (aPL) induce genomic and epigenetic alterations that support a pro- thrombotic state. Thus, a specific gene profile has been identified in monocytes from APS patients -related to aPL titres in vivo and promoted in vitro by aPL- explaining their cardiovascular involvement. Regarding epigenetic approaches, we previously recognized two miRNAs (miR-19b/miR-20a) as potential modulators of tissue factor, the main receptor involved in thrombosis development in APS. aPLs can further promote changes in the expression of miRNA biogenesis proteins in leukocytes of APS patients, which are translated into an altered miRNA profile and, consequently, in the altered expression of their protein targets related to thrombosis and atherosclerosis. MicroRNAs are further released into the circulation, acting as intercellular communicators. Accordingly, a specific signature of circulating miRNAs has been recently identified in APS patients as potential biomarkers of clinical features. Genomics and epigenetic biomarkers might also serve as indices for disease progression, clinical pharmacology, or safety, so that they might be used to individually predict disease outcome and guide therapeutic decisions. In that way, in the setting of a clinical trial, novel and specific microRNA-mRNA regulatory networks in APS, modified by effect of Ubiquinol treatment, have been identified. In this review, current and previous studies analyzing genomic/epigenetic changes related to the clinical profile of APS patients, and their modulation by effect of specific therapies, are discussed.


Antiphospholipid Syndrome/genetics , Antiphospholipid Syndrome/immunology , Atherosclerosis/genetics , Atherosclerosis/immunology , Thrombosis/genetics , Thrombosis/immunology , Antibodies, Antiphospholipid/immunology , Antiphospholipid Syndrome/complications , Atherosclerosis/etiology , Biomarkers/blood , DNA Methylation , Epigenesis, Genetic , Extracellular Traps/immunology , Gene Expression Profiling , Genetic Markers , Genetic Predisposition to Disease , Genomics , Humans , MicroRNAs/blood , MicroRNAs/genetics , Oxidative Stress , Thrombosis/etiology
...